Ультразвуковая очистка

Ультразвук обладает таким многофакторным влиянием, что применение ультразвуковых колебаний позволяет существенно ускорить любой из перечисленных способов очистки и повысить ее качество: переменное давление, колебания частиц жидкости и вторичные акустические явления – «звуковой ветер», ударные волны, кавитация и ультразвуковой капиллярный эффект.

Первостепенную энергетическую роль при этом играет кавитация. При захлопывании кавитационных пузырьков образуются кумулятивные микроструйки жидкости, скорость которых достигает сотен метров в секунду, направленные к очищаемой поверхности. Под действием ударных волн и высокоскоростных микроструек происходит интенсивное разрушение пленки загрязнений (твердой или жидкой) и ее отделение от поверхности. Кавитация обеспечивает интенсивное ультразвуковое эмульгирование жидких и ультразвуковое диспергирование отделившихся твердых частиц загрязнений.

За счет акустических течений обеспечивается удаление из пограничного слоя растворившихся или разрушенных под действием кавитации загрязнений в объем жидкости. Особенно большую роль играют акустические течения при удалении растворимых загрязнений.

Эффективность очистки увеличивается по мере приближения обрабатываемой поверхности к излучателю. Однако приближать изделия к излучателю на расстояние менее 1–2 мм нецелесообразно, так как при малых зазорах между излучателем и обрабатываемой поверхностью ухудшаются условия удаления загрязнений из пограничного слоя и уменьшается активность кавитации вследствие изменения схемы захлопывания кавитационных пузырьков. При малых зазорах кумулятивная струйка действует параллельно очищаемой поверхности и не производит необходимого очищающего действия.

Преимуществом ультразвуковой очистки является не только возможность достичь качественной очистки контролируемой поверхности от самых разнообразных загрязнений, но и удалить загрязнения из полости капиллярного дефекта. Наиболее эффективно применение ультразвука в режиме, обеспечивающем проявление ультразвукового капиллярного эффекта. При этом тупиковые капилляры заполняются реагентом на большую глубину и с большей скоростью. Существенно ускоряется диффузионное перемещение растворенного газа к устью дефекта; растворение загрязнений, имеющихся в полости дефекта; диффузионное перемещение загрязнений к его устью. В результате ускоряется процесс заполнения полостей дефектов в целом и увеличивается глубина проникновения рабочих жидкостей в тупиковые капиллярные каналы.

Применение ультразвука при очистке позволяет значительно повысить качество контроля. При этом несплошности очищаются на достаточную глубину не только от жидкостей, но и таких труднорастворимых загрязнений, как полировальные пасты. В результате число выявленных следов приближается к общему числу принятых во внимание дефектов. Использование в качестве моющих жидкостей воды и водных растворов глицерина и диспергирующего вещества при очистке в ультразвуковом поле дает больший эффект, чем применение таких растворителей, как ацетон и бензин. Это обусловлено большей активностью акустической кавитации в воде и водных растворах, чем в ацетоне и бензине. Применение ультразвука позволяет решить проблемы замены пожаро-, взрыво-, экологически опасных для человека и окружающей среды дефектоскопических материалов на воду и водные растворы.

Анодно-ультразвуковая очистка является наиболее эффективным способом подготовки изделий к контролю. Она обеспечивает удаление с поверхности изделий и из полостей дефектов твердых и высоковязких загрязнений, а также оксидных пленок без применения травильных составов. После очистки нейтрализуют следы очищающих жидкостей, изделия промывают водой и сушат. Скорость такой обработки в 2,5–4 раза выше, чем электролитической.

Анодно-ультразвуковую очистку осуществляют в ультразвуковых ваннах. Составы электролитов и режимы обработки выбирают в зависимости от плотности и толщины слоя загрязнений. Промывку изделий после обработки выполняют путем их многократного погружения в ванны с горячей, а затем с холодной проточной водой. Продолжительность промывки в каждой ванне 0,5–1 мин.

Составы электролитов и режимы анодно-ультразвуковой очистки изделий из хромоникелевых сталей и сплавов:

Материал изделия Компоненты электролита Концентрация, г/л Режим обработки
Температура, °С Плотность тока, А/дм2 Время, мин
14Х17Н2,
11Х11Н2В2МФ
Едкий натр
Вода
250–300
Остальное
60–80 5–7 10–15
ХН62МВКЮ Едкий натр
Вода
300–400
Остальное
70–80 10–20 60–90
ХН70ВМТЮ Едкий натр
Марганцевокислый калий
Трилон Б
Вода

200–300
60–120

4–6
Остальное

60–80 10–15 20–60